Ontwikkeling van de quantummechanica

  • Afdrukken

Belangrijke bijdragen aan de quantummechanica — overzicht

1. Werner Heisenberg (1925)

Bijdrage: Ontwikkelde matrixmechanica, de eerste versie van de quantummechanica.

Grondidee: Je kunt de positie (x) en impuls (p) van een deeltje nooit allebei exact meten.

Vergelijking (Onzekerheidsprincipe):

Δx ⋅ Δp ≥ ℏ / 2
Symbolen:

  • Δx = onzekerheid in positie
  • Δp = onzekerheid in impuls
  • = gereduceerde Planckconstante (ℏ)
  • ℏ = h / (2π)
  • h = Planckconstante (≈ 6,626 × 10-34 J·s)

2. Erwin Schrödinger (1926)

Bijdrage: Formuleerde golfmechanica — beschreef deeltjes als golven.

Schrödingervergelijking (tijdafhankelijk):

i ℏ (∂ψ / ∂t) = Ĥ ψ
Symbolen:

3. Paul Dirac (1928)

Bijdrage: Combineerde quantummechanica met speciale relativiteitstheorie.

Dirac-vergelijking:

(i γμμ − m) ψ = 0
Symbolen:

Deze vergelijking voorspelde antimaterie (o.a. het positron).

4. Richard Feynman, Julian Schwinger, Sin-Itiro Tomonaga (1940s)

Bijdrage: Ontwikkelden quantumelektrodynamica (QED), de theorie van licht en geladen deeltjes.

Feynman: Introduceerde Feynmandiagrammen → visuele rekenhulpen voor interacties.

Schwinger & Tomonaga: Formuleerden de strikte wiskunde via veldentheorie.

Voorbeeld interactieterm in QED (interactielagrangiaan):

Lint = − e ψ̄ γμ Aμ ψ
Symbolen:

5. Murray Gell‑Mann (1960s–70s)

Bijdrage: Ontwikkelde Quantum Chromodynamica (QCD) → theorie van de sterke kracht.

Quarks dragen een "kleur"-lading en wisselen gluonen uit.

QCD-Lagrangiaan (kernvorm):

LQCD = ψ̄ (i γμ Dμ − m) ψ − 1/4 Gμνa Gaμν
Symbolen:

6. Sheldon Glashow, Abdus Salam, Steven Weinberg (1960s)

Bijdrage: Elektro‑zwakke unificatie → elektromagnetisme + zwakke kernkracht in één theorie.

Voorspeld en later bevestigd: de W‑ en Z‑bosonen (bevestigd in 1983).

Kernvergelijking (symmetrie):

Symmetrie: SU(2) × U(1)
L ⊃ − 1/4 Wμνa Waμν − 1/4 Bμν Bμν + …
Symbolen:

7. Yoichiro Nambu (1960s) — Spontane symmetriebreking

Bijdrage: Nambu introduceerde het begrip spontane breking van symmetrieën in veldentheorieën (analogie met superconductiviteit). Dit is essentieel voor het verklaren van massa's via symmetriebreking.

Voorbeeld idee: V(φ) = μ^2 |φ|^2 + λ |φ|^4  (μ^2 < 0 geeft breking, veld krijgt v = ⟨φ⟩ ≠ 0)

8. Peter Higgs, François Englert & Robert Brout (1964) — Higgs-mechanisme

Bijdrage: Mechanisme waardoor gauge-bosonen massa kunnen krijgen zonder de renormaliseerbaarheid te verliezen — introductie van het Higgsveld en vacuümverwachtingswaarde ⟨φ⟩ = v/.

Massaterm (vereenvoudigd): m_W ∝ g v  (v = vacuum expectation value van Higgsveld)

9. Gerard ’t Hooft & Martinus Veltman (1970s)

Bijdrage: Rigoureuze bewijzen dat niet-abeliaanse gauge-theorieën (zoals het elektrozwakke model) renormaliseerbaar zijn. Dit maakte het standaardmodel berekenbaar en consistent.

10. Kenneth G. Wilson (1970s) — Renormalisatiegroep & lattice methoden

Bijdrage: Formele ontwikkeling van de renormalisatiegroep en introductie van latttice-QFT voor niet-perturbatieve studie (lattice QCD). Belangrijk voor begrip van schaalafhankelijkheid en kritieke fenomenen.

11. David Gross, Frank Wilczek & David Politzer (1970s)

Bijdrage: Ontdekten asymptotic freedom in niet-abeliaanse gauge-theorieën (QCD): de sterke wisselwerking wordt zwakker op hoge energieën — kern voor QCD.

Gedrag van de koppeling: β(g) < 0 → g(μ) ↓ als μ ↑

12. Makoto Kobayashi & Toshihide Maskawa (1973)

Bijdrage: Voorstelden dat ten minste drie quarkgeneraties nodig zijn om CP-schending in het zwakke verval te verklaren — leidde tot voorspelling van de derde generatie.

13. Yoichiro Nambu, Kobayashi & Maskawa — Nobelprijzen 2008 (delen)

Context: Nambu voor spontane symmetriebreking; Kobayashi & Maskawa voor CP-schending door drie generaties.

14. Gerard ’t Hooft & Martinus J. G. Veltman — Nobelprijzen en precisiewerk

Context: Voor de wiskundige fundamenten van renormalisatie van de zwakke wisselwerking en deeltjesfysica (Nobel 1999).

15. Kenneth Lane, Michael Creutz e.a. — Niet-perturbatieve methoden en lattice-gemeenschap (1970s→heden)

Bijdrage: Ontwikkeling van Monte-Carlo lattice-QCD, numerieke berekeningen van hadronmassa's, quarkconfinement en thermodynamica van QCD.

16. Edward Witten (1980s→heden) — Mathematische inzichten & QFT

Bijdrage: Grote invloed op de wiskundige structuur van QFT, topologische QFT en de relatie met snaartheorie; vooruitstrevend werk dat nieuwe methoden opleverde.

17. Juan Maldacena (1997) — AdS/CFT correspondentie

Bijdrage: Stelde een krachtige dualiteit voor tussen bepaalde zwaartekrachttheorieën op AdS-ruimten en conformele veldtheorieën (CFT) op de rand — enorme invloed op begrip van sterk gekoppelde QFT's.

18. Experimentele bevestigingen (belangrijke gebeurtenissen)

19. Recente/actuele gebieden (samenvatting)

Belangrijke formules & concepten (kort)

Uitleg van belangrijke symbolen gebruikt hierboven

Samenvattende tabel  personen & kernbijdragen:

NaamBijdrageJaren
HeisenbergMatrixmechanica, onzekerheidsprincipe1925
SchrödingerGolfmechanica, Schrödingervergelijking1926
DiracRelativistische quantumvergelijking, antimaterie1928
FeynmanFeynmandiagrammen, praktische QED1940s
Schwinger, TomonagaFormele QED-wiskunde1940s
Gell‑MannQuarks, sterke kracht (QCD)1960s
Glashow, Salam, WeinbergElektrozwakke unificatie1960s
Yoichiro NambuSpontane symmetriebreking1960s
Peter Higgs, Englert, BroutHiggs-mechanisme (massa voor gauge-bosonen)1964
Gerard ’t Hooft, M. VeltmanRenormalisatie van gauge-theorieën1970s
Kenneth WilsonRenormalisatiegroep en lattice QFT1970s
Gross, Wilczek, PolitzerAsymptotic freedom (QCD)1973
Kobayashi & MaskawaCP-schending; drie generaties1973
Edward WittenWiskundige structuren van QFT, topologische QFT1980s→heden
Juan MaldacenaAdS/CFT dualiteit1997→heden